organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hai-Bo Wang,* Yue-Qing Pu, Jia-Hui Chen and Jin-Tang Wang

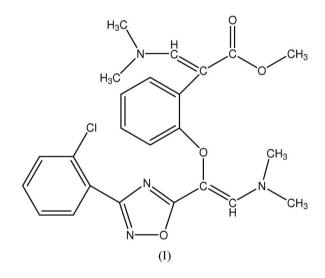
Department of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: wanghaibo@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.060 wR factor = 0.196 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

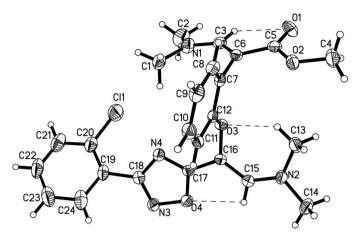

Methyl 2-(2-{1-[3-(2-chlorophenyl)-1,2,4-oxadiazol-5-yl]-2-(dimethylamino)vinyloxy}phenyl)-3-(dimethylamino)acrylate

The title compound, $C_{24}H_{25}ClN_4O_4$, was synthesized by the reaction of methyl 2-{[3-(2-chlorophenyl)-1,2,4-oxadiazol-5-yl]methoxy}phenylacetate and *N*,*N*-dimethylformamide dimethyl acetal. There are short intramolecular C-H···O contacts in the molecule.

Received 11 August 2005 Accepted 21 October 2005 Online 27 October 2005

Comment

1,2,4-Oxadiazoles are an important class of five-membered heterocycles. Some derivatives of 1,2,4-oxadiazoles have intrinsic analgesic (Terashita *et al.*, 2002), anti-inflammatory (Nicolaides *et al.*, 1998) and antipicornaviral (Romero, 2001) properties, and also function as agonists (*e.g.* for angiotensin; Naka & Kubo, 1999) and antagonists (Juraszyk *et al.*, 1997) for different cellular adhesion receptors. We report here the crystal structure of the title compound, (I).



The molecular structure of (I) involves short intramolecular $C-H\cdots O$ contacts (Table 1), as shown in Fig. 1. Bond lengths and angles are unexceptional. The C7–C12 and C19–C24 benzene rings form dihedral angles of 100.6 and 47.6°, respectively, with the oxadiazole ring.

Experimental

Methyl 2-{[3-(2-chlorophenyl)-1,2,4-oxadiazol-5-yl]methoxy}phenylacetate (14 mmol) was dissolved in dimethylformamide (20 ml) and *N*,*N*-dimethylformamide dimethyl acetal (8 ml) was added in one portion. The resulting mixture was refluxed for 6 h, then concentrated under reduced pressure to afford crude (I). Pure (I) was obtained by recrystallizing from ethyl acetate (15 ml) and petroleum ether (7.5 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. ¹H NMR (CDCl₃, δ ,

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the molecular structure of (I), with dashed lines indicating short intramolecular $C-H\cdots O$ contacts. Displacement ellipsoids are drawn at the 30% probability level

p.p.m.): 7.77–7.79 (*m*, 1H), 7.68 (*s*, 1H), 7.46–7.48 (*m*, 1H), 7.34–38 (*m*, 1H), 7.29–7.32 (*m*, 2H), 7.17–7.20 (*m*, 2H), 6.93–6.97 (*m*, 1H), 6.89–6.91 (*m*, 1H), 3.55 (**s**, 3H), 3.01 (**s**, 6H), 2.82 (**s**, 6H).

Crystal data

 $C_{24}H_{25}ClN_4O_4$ $M_r = 468.93$ Monoclinic, P_{21}/c a = 16.088 (3) Å b = 8.3060 (17) Å c = 17.358 (4) Å $\beta = 95.79 (3)^{\circ}$ $V = 2307.7 (8) Å^3$ Z = 4

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 4653 measured reflections 4491 independent reflections 2364 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$ $D_x = 1.350 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 25 reflections $\theta = 9-12^\circ$ $\mu = 0.20 \text{ mm}^{-1}$ T = 293 (2) K Block, colourless $0.4 \times 0.3 \times 0.2 \text{ mm}$

$\theta_{\rm max} = 26.0^{\circ}$
$h = 0 \rightarrow 19$
$k = 0 \rightarrow 9$
$l = -20 \rightarrow 20$
3 standard reflections
every 200 reflections
intensity decay: none

Refinement

4

3

\mathbf{P}^2	$4 = \frac{2}{2} = $
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.060$	+ 0.9P]
$wR(F^2) = 0.196$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.004$
4491 reflections	$\Delta \rho_{\rm max} = 0.91 \text{ e } \text{\AA}^{-3}$
301 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1		
Hydrogen-bond	geometry (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C3-H3A···O1	0.93	2.33	2.750 (4)	107
C13-H13A···O3	0.96	2.20	2.962 (4)	136
C15−H15A···O4	0.93	2.38	2.793 (4)	107

All H atoms were positioned geometrically at distances of 0.93–0.96 Å and included in the refinement in the riding-model approximation, with $U_{\rm iso}({\rm H}) = 1.2$ or 1.5 times $U_{\rm eq}$ of the carrier atom.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXL97*.

References

Enraf–Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Juraszyk, H., Gante, J., Wurziger, H., Bernotat-Danielowski, S. & Melzer, G.

(1997). Int. Patent Appl. No. WO9 744 333. Naka, T. & Kubo, K (1999). Curr. Pharm. Des. 5, 453–472.

Nicolaides, D. N., Fylaktakidou, K. C., Litinas,K. E., Hadjipavlou-Litina, D.

(1998). Eur. J. Med. Chem. **33**, 715–724.

Romero, J. R. (2001). Expert Opin. Invest. Drugs, 10, 369-379.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Terashita, Z., Naruo, K., Morimoto, S. (2002). Int. Patent Appl. No. WO2002 60 439.